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ABSTRACT 

 

Diversity combining is a well known technique which 

improves signal detection performance through use of 

quasi–independently faded signal replicas. The conventional 

wireless propagation modeling decouples large scale 

shadow fading from the “rapidly changing” small scale 

fading and treats them as independent random processes. 

Using different spatiotemporal scales of fading correlation 

we decouple time periods of individual and collaborative 

sensing for the vehicular cognitive networks. We evaluate 

the proposed sensing scheme by means of computer 

simulations in rural and urban propagation environments 

using energy detection for simplicity. On the small scale, 

scheduling of large number of sensing intervals results in a 

significant gain from small scale fading, even if 

collaborating nodes already provide more than a few 

independent measurements. On the large scale, the ratio 

between the large scale decorrelation distance and the 

distance at which the nodes must re–evaluate spectrum 

availability determines whether collaboration can be 

substituted by temporal diversity on each sensor. 

 

 

1. INTRODUCTION 

 

In the prior work [1] we argued that, although it introduces 

significant challenges, dynamic spectrum access in the 

vehicular environment is necessary to satisfy growing 

demand for wireless communications. We also argued that, 

for highly mobile cognitive nodes, primary spectrum user 

protection based on geolocation database lookup has 

significant limitations. Therefore, enhancement of spectrum 

sensing accuracy remains important area of our research 

interest. 

 To that goal, we evaluate application of diversity 

combining to improve performance of spectrum sensing in 

the vehicular environment based on the conventional 

propagation modeling paradigm, which separates dynamics 

of the radio channel into two spatiotemporal scales. The first 

one is small scale fading, which describes power 

fluctuations and delay spread in areas comparable in 

diameter to the carrier wavelength c. The second one is the 

large scale fading, which describes combination of the 

distance related path loss and the slow signal strength 

undulation. This local mean undulation is frequently, 

although somewhat arbitrarily, referred to as the shadow 

fading. 

 We introduce a two–tier scheduling scheme which 

exploits diversity gain from both the small and the large 

scale fading.  The most important parameter for design of 

scheduling is the distance at which the nodes are required to 

reassess spectrum usage. It is imposed by a regulating 

authority such as The Federal Communications Commission 

(FCC), which currently sets it to 100 m [2]. We refer to this 

distance as the decision distance. First, while the vehicles 

traverse the decision distance, we apply temporal diversity 

to the small scale fading by repeating sensing intervals with 

the period larger than its coherence time Ts. Second, 

depending on the imposed decision distance, the diversity 

gain from large scale fading can be exploited either through 

temporal or spatial diversity. When the decision distance is 

much larger than the decorrelation distance of large scale 

fading Dl, a single sensor can achieve the same detection 

performance as multiple sensors spread over the decision 

distance. However, collaboration must be used to maximize 

diversity gain if the decision distance is comparable to, or 

smaller than Dl.  

 It is well known that the small scale fading gain does 

not grow linearly with each additional diversity branch [3]. 

Sufficient separation of sensors on the large scale 

guarantees sufficient separation on the small scale as well, 

and the small scale fading gain diminishes as more 

cars/sensors are added. We simply overcome this by 

exponentially increasing the number of sensing intervals. 

This is practically impossible to do in space using multiple 

antennas. However, it is straightforward to use temporal 

diversity with cars as mobile sensor. The additional delay to 

collect samples is limited by the decision distance, which is 

typically by orders of magnitude larger than the coherence 

distance of the small scale fading Ds. 

 To the best of our knowledge, performance of multiple 

sensors under correlated composite (large and small scale) 

fading in the vehicular environment, and with regard to the 

regulatory domain requirements was not previously 

considered. The benefits of diversity combining in general 

are, for instance, evaluated in [4]. The tradeoff between 

temporal and spatial diversity on a large fading scale is 
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analyzed in [5]. Performance of energy detection under 

small scale fading is modeled analytically in [6], and under 

correlated shadowing in [7]. Detection performance of a 

single energy detector under composite fading is evaluated 

in [8]. Our system model builds upon [9], which addresses 

performance of vehicular sensors under path loss and 

shadow fading.  

 In the following, we use the terms coherence distance 

Ds and coherence time Ts to quantify coherence of the small 

scale fading. The terms decorrelation distance Dl and the 

decorrelation time Tl are used to quantify correlation of the 

large scale fading.  

 In the next section we introduce the system model. In 

Section 3 we explain specific settings used in the 

simulations. Section 4 contains results of the performance 

evaluation. We formulate conclusions in Section 5.  

 

2. SYSTEM MODEL 

 

We consider two types of propagation environments to 

describe radio channel between the primary spectrum user 

and the sensors positioned on the vehicles. The urban and 

the rural environments have different large and small scale 

fading parameters, which are summarized in Table 1. The 

rationale behind selection of some of the parameters in 

Table 1 is explained in Section 3. With respect to 

propagation, we use the rural, open space model to describe 

fading of the primary signal on a freeway surrounded by flat 

terrain. The urban model describes fading in a downtown 

city area, which is characterized by much larger delay 

spread, absence of the line–of–sight (LOS), and shorter 

decorrelation distance of shadowing. 

 We focus on the TV white space and assume a channel 

centered at fc = 700 MHz.  

 

2.1. Mobility 

 

We assume a model with either a single car, or a convoy of 

up to M = 8 vehicles (presented in Fig. 1) traveling straight 

in the same direction with constant speed v. The vehicles are 

separated by a fixed distance. This distance is the distance 

each vehicle passes in a second, and it corresponds to a 

dense traffic scenario. By expressing the distance in time 

units we take into account intuitive behavior of drivers to 

positively correlate the speed and the separation among 

vehicles. The reason for this is to maintain distance between 

the vehicles which is sufficient to accommodate the reaction 

time in case a decisive maneuver is needed. 

 It is important to emphasize that shortening the distance 

among vehicles has profound influence on sensing, since the 

diversity gain depends on the correlation between channel 

realizations. 

 

2.2. Fading 

 

2.2.1. Large Scale Fading 

We assume that the distance between the sensors is much 

smaller than the distance between the primary user and the 

sensors. Therefore, we neglect change in primary power due 

to path loss and take into account only the lognormal 

shadowing.  

 The standard deviation of shadowing is provided in 

Table 1. Selected values are representative for 

corresponding environments, that is, larger in the urban 

environment and smaller in the rural environment. The 

correlation of shadowing is described by the empirical 

exponential model [10]. Correlation is realized by 

multiplying M uncorrelated normally distributed vectors 

with a Cholesky decomposition of the desired correlation 

matrix. The decorrelation distance Dl corresponds to the 

distance d between the sensors at which the correlation 

coefficient is equal to 0.5: 
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Table 1: Simulation settings and parameters 

 

Environment Rural Urban 

Shadow fading mild severe 

standard dev.  3 dB 10 dB 

decorrelation dist. Dl 100 m 10 m 

local area size (m) 10 c 5 c 

Small scale fading LOS, GSM rural NLOS, GSM urban 

tap delays (s) 0  0.2  0.4  0.6  0 0.2 0.6 1.6 2.4 5.0 

relative powers (dB) 0  -2   -10 -20 -3  0   -2   -6  -8  -10 

Rice K-factor 1 n/a 

Doppler spectra LOS: Jakes+(0.7fmax) 
all other taps: Jakes 

all taps: Jakes 

Sensor speed v 100 km/h 50 km/h 

Carrier frequency fc  700 MHz 

Sensing bandwidth 100 kHz 

Baseline sensing 
interval 

0.1 ms  
(N = 10 samples) 

1 ms  
(N = 100 samples) 

Sensing period 40 ms 80 ms 

Decision distance 100 m or 10 m 10 m or 107 m 

SNR -10 dB or -5 dB 

Sensor link budget -5 dB 

 

 
Fig. 1: Mobility model. 
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Once a realization of shadowing is created, the moving 

vehicles observe the same values at the corresponding 

positions.   

 

2.2.2. Small Scale Fading 

Small scale fading is modeled using the simplified GSM 

wideband propagation models, applicable for channels with 

bandwidth of up to 10 MHz [11]. Since small scale fading 

decorrelates rapidly, we generate independent initial tap 

coefficients at the start of every sensing interval. The model 

parameters are also given in Table 1. 

 

2.2.3. Received Signal 

Since the purpose of our work is to evaluate diversity 

combining on different spatiotemporal scales, we assume 

simple energy detection as the underlying local sensing 

algorithm. For simplicity, we assume that the signal to be 

detected is a pilot tone. This somewhat resembles detection 

of the pilot tone which is embedded into the Advanced 

Television Systems Committee (ATSC) digital TV signal by 

adding the constant 1.25 to the baseband signal [12]. 

 The constant signal of amplitude A is passed through 

the time varying filter representing the small scale fading 

hs(t;) and then scaled with the value which is zero mean 

normally distributed on the logarithmic scale 

 

).(0,~)(log10 2

10 Nlh    (2) 

 

Since the value of shadowing represents local mean of the 

channel response, it is constant during a sensing interval. 

The complex baseband representation of the faded signal is 

then given as  

 

  ls hthAty  );()(     (3) 

 

where * represents convolution. 

 After passing it through the random filter representing 

the channel between the primary transmitter and the sensors, 

we decimate the signal y to narrow the bandwidth to 100 

kHz and insert additive white Gaussian noise (AWGN) n(t) 

with power corresponding to that bandwidth 

 

).()()( tntytr     (4) 

 

We model the contribution of the receiver noise figure, 

cable losses, and antenna gain with a 5 dB increase in the 

noise floor. 

2.3. Primary User Detection 

 

 To formulate the decision statistics we use a number of 

samples of the received signal r. Let us represent a vector of 

these complex values with R. We collect these samples in 

two ways: 

1. In the proposed scheduling scheme, presented in Fig. 2, 

vector R contains N·K samples. At each of K sensing 

intervals N samples are collected. The sampling 

intervals occur with the period much larger than the 

coherence time of the small scale fading Ts. On the 

other hand, the time to acquire N samples is shorter 

than Ts. In other words, N samples are collected while 

the channel is statistically time invariant. In this manner 

K uncorrelated sets of samples are acquired. 

2. As the benchmark test, we repeat the same simulations 

with distinction that all N·K samples are collected 

consecutively. In this case, the total sensing time 

needed to acquire these samples is shorter or 

comparable to Ts. 

 

 For a given detection threshold , we decide between 

the two hypotheses 
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2.3.1 Hard Decision Combining 

Let index m denote one of M mobile sensors. The local 

hypothesis testing is 
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where 
’
 represents conjugate transpose. These M local 

decisions can then be combined using different logical rules: 

AND, OR, or majority. 

 

2.3.2. Soft Decision Combining 

The local test statistics can be averaged across M vehicles 
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resembling the equal gain combining (EGC). Another 

approach is to put more weight to stronger signals, similar to 

the maximum ratio combining (MRC) 

 

 
Fig. 2: Scheduling of sensing. 
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with weights am provided from crude signal–to–noise ratio 

(SNR) estimates 
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3. NUMERICAL ANALYSIS IN DETAIL 

 

In practice, a regulatory body imposes requirement that the 

decision about presence of a primary user is reached in 

regular intervals. For instance, the FCC [2] requires that 

spectrum sensing should be performed at least once every 

60 s. This requirement is not intended for highly mobile 

white space devices. More adequate requirement is the one 

intended for devices which rely on geolocation database 

access to acquire spectrum occupancy. The database should 

be accessed each time a device moves by 100 m. It is 

reasonable to assume similar rule for vehicular networks. By 

relating primary user protection to traveled distance it can 

then be made independent of the speed, which varies widely 

with location and time of day. 

 We selected two values for the decision making 

distance. The first one—100 m—is following the current 

FCC rules. The second—10 m—is more stringent, with 

rationale that it should provide better protection of primary 

users. Both values are comparable to realistic values of the 

large scale fading decorrelation Dl. 

 We assume that the sensors move by 50 km/h in the 

urban environment and 100 km/h in the rural environment. 

The one–second separation between the cars then 

corresponds to 13.9 m and 27.8 m, respectively. The convoy 

of M = 8 vehicles is 97.2 m and 194.4 m long, respectively. 

 To decide on duration of the sensing interval we 

performed simple tests on used multipath models to 

determine the coherence distance Dc statistically from a 

number of realizations of y(t)  
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where i,t and i represent the sample means calculated 

over samples y(ti+t) and y(ti), respectively. The bar 

denotes complex conjugate.  

 For a given constant speed v it is trivial to convert time 

lag into distance d = vt, and normalize the lag with 

respect to the carrier wavelength c. In Fig. 3 we present 

these results for decimated (100 kHz) channels in a form 

independent of speed and carrier frequency. The Rice model 

selected to represent small scale fading in the rural 

environment decorrelates much slower than the Rayleigh 

urban model due to the deterministic portion of the LOS 

component. The Jake’s Doppler spectra of the taps in the 

urban model result in correlation very similar to the flat 

(single tap) Rayleigh fading. As a sanity check we also 

provide theoretical flat fading correlation [3], given by the 

Bessel function of the first kind and zero order Jo.  

 When evaluating the sensing performance we vary the 

number of vehicles M  {1,2,4,8} (Fig. 1). For M = 2 we 

simply keep the first and the last car in the convoy m  

{1,8}. When M = 4, we consider only cars with odd indexes 

m  {1,3,5,7}. To make fair comparison for different M we 

scale the sensing interval (number of samples N). For 

instance, when M = 2 we increase the number of samples 

four times. This way we keep the time–bandwidth product 

constant in all simulations. 

 When M = 8 in the urban environment we set the 

sensing interval to 1 ms (N = 100). Convenient setting of the 

period of sensing intervals to 40 ms for rural and 80 ms for 

urban environment results in K = 100 in the rural and K = 10 

in the urban environment. To keep constant the product 

MKN = 8000 we set N = 10 in the rural environment. If, for 

instance, M = 1 the number of samples increases to N = 80 

in the rural and N = 800 in the urban environment. 

 In each simulation run, as the vehicles traverse the 

decision making distance, we keep the shadow fading hl 

constant in discrete steps representing the local areas. 

Following the channel modeling heuristics detailed in [13] 

and [10] we conveniently set the local area to be ten carrier 

 
Fig. 3: Numerically generated normalized correlation coefficients of 100 

kHz channels for different small scale fading models. 

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

 d / 

|
|

 

 

rural

urban

flat

J
o
(.)

Proceedings of SDR-WInnComm-Europe 2013, 11-13 June 2013

104



wavelengths c in the rural environment and five carrier 

wavelengths in the urban environment. 

 The detection probability Pd—and its complement, the 

probability of missed detection Pm—are evaluated for 

different SNRs by creating a channel realization, adjusting 

the amplitude A, and calculating the test statistics. This 

procedure is repeated for a large number of channel 

realizations. The false alarm probability Pf is evaluated by 

setting A = 0. It is then possible to relate Pf and Pm through 

different values of threshold  and generate complementary 

Receiver Operating Curves (ROC). 

 

4. RESULTS 

 

We assume the SNR to be the ratio between the power of 

signal that must be detected A
2
 and the noise floor of 100 

kHz sensing bandwidth (without mentioned 5 dB budget 

penalty). We consider two such SNRs, -10 dB and -5 dB. 

These correspond to -27.8 dB and -22.8 dB in comparison to 

the noise floor of a 6 MHz TV channel, respectively. Of 

course, the performance of a detection system suffers from 

many implementation issues, but it can be further improved 

in two ways: 1) by increasing the sensing interval; and 2) by 

applying feature detection. Since energy detection is used as 

the underlying sensing algorithm for simplicity, we assume 

perfect estimation of the noise floor. 

 

4.1. Diversity Gain 

 

In Figs. 4 and 5 we present detection performance of EGC 

in the urban and in the rural environment with -5 dB SNR, 

for different number of sensors M. 

 In the urban environment (Fig. 4), assuming 10 m 

decision distance, scheduling of sensing with M = 2 and 4 

sensors shows practically the same performance as sensing 

in a single slot for the same time with M = 4 and 8 sensors, 

respectively. 

 In the rural environment (Fig. 5), the diversity gain is 

much smaller for two reasons. First, half of the power 

related to the small scale fading is deterministic. Second, the 

variance of shadowing is much smaller in comparison to the 

urban environment. With decorrelation distance of 100 m, 

even only M = 2 sensors, separated by almost 200 m, 

achieve maximum diversity. We attribute slightly worse 

performance of M = 8 sensors to their dense arrangement 

being exposed to the same shadowing as they move. For 

clarity, we omitted the results for benchmark sensing with 

eight cars, which is similar to benchmark sensing with two 

cars. 

 
Fig. 5: Performance of EGC in rural environment for 1, 2 and 8 cars, 
under -5 dB SNR (-22.8 dB SNR for 6 MHz channel), for decision 

distance 100 m. Dashed line represents benchmark sensing in a single 

slot (denoted with ‘b’) and full line represents proposed slotted sensing 

(denoted with ‘s’). 

10
-3

10
-2

10
-1

10
0

10
-3

10
-2

10
-1

10
0

P
f

P
m

 

 

b 1

b 2

s 1

s 2

s 8

 
Fig. 4: Performance of EGC in urban environment for 1, 2, 4 and 8 
collaborating cars, under -5 dB SNR (-22.8 dB SNR for 6 MHz 

channel), and with decision distance 10 m. Dashed line represents 

benchmark sensing in a single slot (denoted with ‘b’) and full line 

represents proposed slotted sensing (denoted with ‘s’). 
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Fig. 6: Diversity gain achieved through the scheduling of sensing is 
between 1 and 2 dB in the rural environment, and around 5 dB in the 

urban environment. 
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 To illustrate the gain achieved by scheduling, we 

present in Fig. 6 results for the rural environment with two 

cars, together with results for the urban environment with 

eight cars. The gain in the rural environment is between 1 

and 2 dB. The gain in the urban environment is 

approximately 5 dB. 

 

4.2. Performance of Different Fusion Algorithms 

 

 Fig. 7 provides an overview of detection performance 

of our scheduling scheme across different fusion algorithms 

for SNR -5 dB in the urban environment. Here “individual” 

sensing represents the average of local decisions across all 

M = 8 vehicles and all realizations.  

 Among hard fusion algorithms, the OR rule shows the 

best performance. This is easy to justify having in mind that 

all sensors are considered equally reliable and, on the 

average, all experience the same fading statistics. Therefore, 

when a sensor correctly detects the primary user, it is most 

likely the sensor with the best propagation conditions. 

 The weighted sum performs only marginally better than 

the equal gain combining. It is well known that, when all 

diversity branches exercise the same average power, MRC 

performs only slightly better than EGC [3]. However, when 

path loss fading is not negligible across the sensors, the 

MRC should provide larger performance improvement. 

 To complement results in Fig. 7 we present in Fig. 8 the 

same results for the rural environment. In this case, with less 

variation in signal strength due to shadowing, soft methods 

perform better than all hard rules. These results qualitatively 

agree well with the results reported in [9] for a similar 

shadowing statistics. 

 

4.3. Decision Distance versus Spatiotemporal Tradeoff 

 

The same argument we used to describe performance of two 

and eight sensors in Fig. 5 can be used to explain some of 

the results in Fig. 9, represented with dashed line and 

diamond marker. Here we look into the rural environment 

with eight sensors which are distributed over a distance 

twice the shadowing decorrelation distance. In such a 

scenario any decision distance smaller or equal to the 

decorrelation distance (e.g. 10 m or 100 m) does not help to 

decorrelate the shadow fading.  

 Complementary to that, if a single sensor can “wait 

enough” to experience the same diversity gain experienced 

by many collaborating nodes, it can achieve the same 

performance as they do. For instance, M = 8 nodes cover 

107 m while each travelling for 10 m. If a single node 

travels the same distance before making decision, it 

achieves the same performance as eight nodes, indicated 

with star markers in Fig. 9.  

 The tradeoff between space and time has both pros and 

cons. Collaboration involves communication overhead to 

 
Fig. 7: Performance of different hard and soft fusion algorithms in urban 

environment for 10 m decision distance, and -5 dB SNR (-22.8 dB SNR 

for 6 MHz channel). 

10
-3

10
-2

10
-1

10
0

10
-3

10
-2

10
-1

10
0

P
f

P
m

 

 

AND

individual

majority

OR

EGC

MRC

 
Fig. 8: Performance of different hard and soft fusion algorithms in rural 
environment for 100 m decision distance, and -5 dB SNR (-22.8 dB 

SNR for 6 MHz channel). 
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Fig. 9: Performance of EGC in rural and urban environments for 
different decision distances, and -10 dB and -5 dB SNR (-27.8 dB and   

-22.8 dB SNR for 6 MHz channel). 
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exchange local sensing information and distribute the fusion 

outcome by means of unreliable wireless communication. In 

comparison to that, a single sensor utilizing temporal 

diversity suffers from additional delay needed to traverse 

the same distance. 

 

5. CONCLUSION 

 

We proposed and evaluated a method to improve 

performance of spectrum sensing in the vehicular 

environment by carefully scheduling sensing intervals to 

accommodate for different time scales of the primary user 

signal fading. Assuming energy detection, splitting of the 

sensing interval into many shorter intervals (with a period 

much larger than the coherence time of small scale fading) 

results in approximately 1 to 2 dB gain in the rural 

environment, and around 5 dB gain in the urban 

environment. 

 The soft combining techniques provide consistently 

good performance irrespective of the environment. This is 

not the case for hard combining. Under strong fading and 

equal average powers at the sensors, the OR rule is 

comparable to the soft methods. Under less severe fading 

simple majority outperforms all hard rules, but fails short of 

the accuracy achieved with the soft methods. 

 We also discussed influence of regulatory domain 

requirements, namely, the distance at which mobile sensors 

should re–evaluate spectrum occupancy, on the accuracy of 

detection. In severe fading, with detection distance much 

larger than the fading decorrelation distance, diversity gain 

can be utilized with a single sensor by trading spatial 

diversity for temporal diversity. This approach has the 

advantage of avoiding communication overhead (including 

failures) associated with cooperative sensing. Under mild 

fading conditions, for very short detection distance, the 

diversity must be exploited through collaboration of sensors. 
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