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Abstract—Multicore hardware is now ubiquitous in society. While
Moore’s Law predicts that the number of transistors on a chip will double
every two years, its effect on the speeds of single core processors
have levelled off. To work around this limitation, hardware designers
are producing chips with an increasing number of cores. This allows
vast increases of processing on a single chip without increases in clock
speeds.

However, this extra processing power does not come for free. There
are significant design issues that need to be taken into account, such as
parallelisation and synchronisation issues. In some cases there can be
bottlenecks that extra cores will not help overcome. Here we empirically
assess the potential performance changes when running SDR applica-
tions on multicore platforms. We conclude that the performance of SDRs
can in fact benefit from multicore hardware; however, various factors may
have an adverse effect on potential performance gains.

1 INTRODUCTION

Computer systems have seen many transformations since their
inception. A relatively recent, albeit significant, evolution has
been with respect to the CPU. Traditionally, CPUs have been
based on a serial pipeline where an application is executed
sequentially. This has given a somewhat easy approach to
coding applications. For a developer, it is straightforward to
see that one instruction leads onto another, giving a predictable
flow to the program.

Over the years, increases in system performance have come
from the ever increasing speeds of the CPU. Hardware manu-
facturers have increased clock speeds by increasing the number
of transistors on the CPU while also decreasing their overall
size [1]. Moore’s Law [2] has applied whereby performance
has roughly doubled every two years. This has worked for
decades, however, since the mid-2000s there has been a plateau
in the performance gains that have been achieved by using this
method due to power and heating constraints. As mentioned
elsewhere [1], it is possible to increase performance using this
method, but processors would need to double in size while
offering marginal gains.

However, this does not necessarily mean that Moore’s Law
has become invalid. Since it was apparent that the traditional
method of performance increases would not last forever, hard-
ware manufacturers have been devising new ways of getting
the most out of a CPU. The method that has been most
successful over recent years has been the multicore CPU.
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1.1 Multicore CPU

The multicore CPU is a change from the traditional single core
processor in that rather than making a single pipeline faster, it
enables multiple pipelines with slightly lower performance to
be utilised at once. The optimal outcome, for instance, is that
performance may double when doubling the number of cores
on a given processor. While this is generally good news [3],
it also means that the free lunch for software developers is
clearly over. Developers have had the privilege of creating
software with the assumption that hardware would increase
in performance over the foreseeable future with no effort on
their part. An application that runs slowly on a given hardware
platform may run at an adequate speed when the very same
application is executed on a faster CPU. This is no longer the
state of affairs for developers today.

When extra cores are provided on a CPU, the application has
to know how to utilise them. This is the biggest effect when
programming single vs. multicore systems. In order for the
application to take advantage of these hardware capabilities,
it must know what parts of the system can be executed in
parallel. This can be achieved with the concept of concurrent
programming. A single application can make a choice at a
particular time when it can divide processing between multiple
units of execution, such as a thread. Thankfully, it is at this
point that the hardware level of abstraction hides the handling
of the cores. Therefore, software need only know concurrency
at a software threading level in order to exploit the full
performance of multicore hardware.

Existing software can also take advantage of multicore hard-
ware. If an application makes use of multiple threads, which
can be a desirable design decision in single core environments,
then each of those threads may utilise the multicore feature
of the CPU. An issue for existing software is how far it
uses concurrency and asynchronous processing. As stated by
Amdahl’s Law [4], if an application has a particular portion
that cannot be parallelised, the ill-effects of this bottleneck
will persist no matter how many processors are allocated to
the application.

Various factors may limit the performance gains that can
be obtained by parallelising software for deployment on mul-
ticore hardware. For instance, some I/O operations are serial,
meaning that each operation cannot be effectively speeded up,
although it is sometimes possible to carry out multiple opera-
tions in parallel with each other (e.g., by reading a file while
updating a user display). In addition, data dependencies can
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prevent effective parallelisation. Data dependencies happen, for
instance, when a unit produces data which is later consumed
by another. In this case, the units affected cannot be executed
in parallel, and so on.

1.2 Software Defined Radio

The software defined radio [5] is the application of choice
in our research. SDRs are an incredibly flexible way of
programming a radio for use under multiple frequencies, bands
and codecs. SDRs take much of the custom hardware out
of a radio and instead implements hardware functionality in
software on a general purpose host, such as a standard desktop
PC. This host receives a transmission from a hardware radio
and processes it natively. The host is the flexible part of the
equation as it is possible to vary its software (e.g., the operating
system), hardware and CPU architecture, while still allowing
a vast number of software radio components to be utilised at
low cost.

1.3 Research Questions

Here, we detail our investigation into performance changes
that occur in SDR systems when used on a multicore plat-
form. Through this research we should be able to answer the
following questions:

1) Can an existing SDR benefit from execution on multi-

core hardware?

2) Is it possible to extend SDR functionality to make use

of multicore features?

3) Are there cases when multicore adversely affects per-

formance? and ultimately

4) Is it worth using multicore hardware for SDR applica-

tions?

Our empirical investigation will evaluate SDR performance
under different circumstances. In Section 2, we give an
overview of software defined radios and the software used
to drive them. Sections 3 and 4 detail the platforms that
we used for our experiments with OSSIE and GNU Radio,
respectively. In Sections 5 and 6, we present our empirical
results with OSSIE and GNU Radio. Finally, in Section 7 we
give our conclusions on these results and attempt to answers
the research questions above.

2 SOFTWARE DEFINED RADIO ENVIRONMENT

There are many different options available to users who wish
to use a software defined radio. However, there are two main
components; the hardware radio and the software host. The first
step for us in our research was to decide what environment we
should use to carry out our experimentation. A popular choice
for this is the versatile USRP [6] from Ettus Research [7]. The
USRP is a modular system that can take a number of daughter-
boards, each providing different features such as varying bands
and receiving/transmitting capabilities. In our case, we wanted
to perform reception within the FM frequency range; thus,
we opted for the WBX daughter-board with the USB enabled
USRP1, which houses the daughter-board.
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There are also a few choices that can be made for the
software component of the environment. We evaluated two
systems in depth. First, we looked at the Joint Tactical Radio
System (JTRS) [8] compliant OSSIE [9], which gives a highly
modular SDR software solution based on a component graph
architecture. Another software framework that we considered
is GNU Radio, which like OSSIE is also a graph based system
but is not JTRS compliant. It is apparent that the graph based
architecture is a popular choice for developing streaming based
applications, just like some non-SDR related frameworks such
as some DirectX APIs [10]. Even though both OSSIE and
GNU Radio are architecturally similar, we chose to focus
our investigation to GNU Radio due to the maturity of the
platform, also considering that OSSIE uses some components
of GNU Radio in order to act as an interface to the USRP.
Most of the empirical results that we report later on are based
on GNU Radio, however, we will also report some of our
preliminary results obtained with OSSIE.

3 OSSIE EXPERIMENTAL SETUP

In our research, we empirically studied the effects of multicore
on software defined radio usage. Our first set of experiments
involved the OSSIE framework. Since our aim was to inves-
tigate in depth real-world applications with GNU Radio, we
ran a smaller set of experiments at a more abstract level with
OSSIE.

The OSSIE framework is built upon a graph architecture
just like GNU Radio; there are many similarities between
the two frameworks. One key difference is that OSSIE is
JTRS compliant, which in turn makes it highly modular with
a CORBA [11] interface between components. In terms of
system resources, a significant difference is that OSSIE will
then spawn each graph component in a different OS process,
whereas GNU Radio spawns components in different threads
(i.e., light-weight processes) within the same process.

We performed some preliminary experiments with OSSIE
in order to get a feel for applications within the domain.
The simple set of experiments that we performed was a pure
simulation of a component graph. Using a dummy source com-
ponent from the OSSIE toolbox (TX Demo), empty packets
would be injected into the system at a predefined interval of
1 ms. The goal of our experiments was to determine with
how long it would take for a packet to make the transition
to a null sink component (RX Demo), also provided by
OSSIE. By imposing a variable load on a set of simulation
components, we could then see the effects of the workload
relative to packet throughput. Furthermore, we investigated
different graph configurations, in particular, serial and parallel
graphs, where our workload is either performed in a sequential
or a parallel pipeline. The hypothesis here is that since each
component within an OSSIE graph is executed in their own
process, splitting workload among components should yield an
improvement on a multicore platform, where an improvement
is denoted by a decrease in time for a packet to make its
transition from the source node to its destination.

Since this set of experiments was only concerned with the
OSSIE graph, we did not use any SDR hardware. For the



Proceedings of SDR-WInnComm-Europe 2013, 11-13 June 2013

software host, we selected a dual-core PC (with an Intel Core
i3 CPU) to perform the experiments with Ubuntu 10.04 (32-
bit), which is the latest compatible version of Ubuntu that is
supported by OSSIE 0.8.2.

4 GNU RADIO EXPERIMENTAL SETUP

In our experimentation with GNU Radio [12], we investigated
in detail more real-world systems using the USRP antenna.
The primary metric for our study is concerned with the
all important concern of signal integrity. We created a test
framework using GNU Radio where we could easily modify
various parameters and system configurations in relation to the
software host. By methodically varying such parameters, we
identified properties that could affect overall system quality.
For example, if introducing more threads into the system
introduced gaps into the audio playback from the radio, we
could deduce that the introduction of threads in this situation
is not desirable for the application. This is very applicable to
our work since there are several parameters that are related to
multicore hardware, such as process affinity and the number of
software threads within the application. On the one hand, pro-
cess affinity defines the number of cores that can be assigned to
a given application. For instance, by setting an application’s
process affinity to one, we can force an application to run
on a single core. Software threads define units that can be
executed in parallel within the context of the same OS process.
Threads can be executed simultaneously on different cores, if
the affinity of the application containing the cores is greater
than one.

We ran our experiments with GNU Radio on a multicore
processor, with the Intel Core 17 CPU, which includes four
hardware cores with one hyper-thread per core. As we want to
use GNU Radio, a reliable host operating system is a Linux-
based OS; in our case we chose the 32-bit variant of Ubuntu
12.10.

4.1 Test Framework

The test framework is the basis of our experimentation. GNU
Radio offers us a very modular graph-based architecture. The
aim of a GNU Radio graph is to transform an input into an
output via a series of transforms. An example of a very simple
graph is one that contains two components. Figure 1 shows
such a graph, where a source component generates a sine wave,
which will then pass the signal to an output component which
in turn renders it to the PC’s speaker. A more complex graph
could be made to receive, say, FM radio from a USRP, as
can be seen in Figure 2. Such a graph would consist of an
input node which interfaces with the USRP hardware, passes
through numerous transform nodes by performing operations
such as demodulation, with the output then sent to the speaker.

Our experiments used this kind of architecture to create our
testing framework. This was done by measuring the amount
of data that is output to the speaker. Since SDRs are real-time
systems, there has to be a steady flow of data throughout the
graph. If there were any blocks in the graph that temporarily
stop data flow, samples would be dropped at or near that point
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Fig. 1. GNU Radio Companion graph that plays back a
test signal.

of time. In the case of the previously mentioned graphs, the
source components would skip the generation of samples. This
could be heard by the user as simple sound jitters. The greater
the bottleneck, the more disrupted the output was.

However, to get a more accurate reading we did not use
audible sound quality, but instead counted the samples that
made it through the graph. This was done by counting the
number of samples per second that passed through a custom
component which is placed just before the output component.
It is through this sample rate that we determined if degradation
occurs, potentially due to a bottleneck in the pipeline. Through
our experimentation we varied parameters and observed how
these parameters correlated with this sample rate.

We were able to develop two different modes of operation
with this framework:

e Manual mode—Here we used GNU Radio Compan-
ion [13] to present a user interface (Figure 3) to the
investigator, which contains various sliders that vary
the available parameters. We can specifically vary the
following parameters: (1) the total number of software
threads executing in our GNU Radio custom component;
(2) The amount of simulated workload imposed on the
various cores; and (3) The frequency at which we receive
an FM signal. This is an ideal way of quickly gauging
the effects of each parameter on system performance.
Output can easily be heard via degradation of output.

e Automatic mode—For a deeper analysis, it is also possi-
ble to automate parameter modifications via a configura-
tion file. Samples are taken at set intervals (in our setup,
10 samples of 2 second duration) which will indicate
the throughput of the system. This throughput gives an
insight into the overall system performance.

An important aspect of the framework is our custom experi-
mentation component which not only acts as a hook in getting
timing data out of the system, but also as a way of inducing
some system-specific logic into the workflow. This is a useful
way for a developer in the real-world to see how their code
reacts to multicore parameter modifications. A use case of this
methodology is to implement a feature within a component that
performs a transform, for example, encryption of the signal or
multiplexing of two signals. Each case could introduce their
own parameters into the equation which could be exposed via
our test framework, allowing a systems engineer to change
parameters and see how performance would be affected in
their application. In our case, we performed some general
processing with variable workload in a so-called Processor
Block.

The Processor Block performs the simple operation of
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Fig. 2. GNU Radio Companion graph for FM receiving and playback.

batch in place floating point division, where the workload is
correlated to the number of division performed. However, this
operation is designed to utilise multiple cores via threading.
When a packet is received from the radio, the workload is
shared among a variable number of threads by creating a thread
with the job of performing the workload function an assigned
number of times (i.e., n floating point divisions).

The hypothesis here is that as we change the number of
threads, active cores, and workload, we should see some
changes in performance. If performance increases when we
introduce more threads and cores into the component, we
can conclude that multicore can improve performance in
SDR applications. We conducted several experiments varying
parameters and component graphs to see the effects that these
have on overall system performance.

5 OSSIE EMPERICAL RESULTS

Table 1 shows the results that were collected from the graph
in Figure 4. It details the number of iterations of workload
that were applied in several cases, along with the amount of
time it took for a packet to make its transition from the source
component to the sink on a dual core system. Times for each
component shown in Figure 4 are expressed in milliseconds.

When a light workload was applied to the system (Row 1),
packets would make their transition from the source to the
sink is roughly 1.20 ms. As workload is applied to any custom
filter, the transition time increases as expected. Row 2 shows
results when the custom filter has a slight workload of 1000
floating point divisions. This gives an expected slow down in
the transition speed since the packet will be blocked waiting
for the processing to complete. The benefits of multicore
came into play when there was a high workload applied to
multiple components. Row 4 shows two filters in serial having
a workload of 5000 divisions applied to both. The time for a
packet to go through the system takes twice as long when
running on a single core. This will be due to the parallel
processing of the workload in different components occurring
in different processes, thus different cores. This hypothesis is
backed up by the recurrence of this in other reported cases.
We conclude that in our OSSIE simulations, we were able to
achieve near-optimal or optimal (linear) speed-ups when using
multiple cores.

6 GNU RADIO EMPIRICAL RESULTS

To further our investigation into multicore performance for
SDRs applications, the next line of research was to switch to a
more mature SDR framework, GNU Radio. In this section we
detail our findings on an experiment by experiment basis, while
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Seriall | Serial2 | Mux Serial4 | 2 1 Core | Perf.
(itera- | (itera- | (itera- | (itera- | Cores (ms) Delta%
tions) tions) tions) tions) (ms)

1 1 1 1 1.20 1.20 1.00
1 1 1 1000 109 110 0.99
1 1 1 5000 548 548 1.00
1 1 5000 5000 547 1095 0.50
1000 1000 5000 1000 655 876 0.75
1000 1000 1 1 110 220 .050
1000 1000 1 5000 548 781 0.71
5000 5000 5000 5000 1084 2153 0.50

TABLE 1

Timing results for packet transfer in OSSIE.

showing the process that we followed to gain extra information
for further clarification.

6.1 How do Multiple Threads Affect Performance

One of the key questions to answer here is how the addition
of threads within an application affects overall system perfor-
mance. To answer this question we looked at the performance
difference between using a single thread for all our simulated
workload and using up to four threads. Two experiments were
executed—one using a test signal graph and another using an
FM reception graph.

Figures 5 and 6 show the overall performance of the SDR
application for the two different graphs. Performance can be
measured based on signal quality, ranging from 0% (no signal)
to 100% (full signal). The signal quality was calculated based
on the number of dropped packets from the audio stream. If
a stream is transmitting 96,000 samples per second, if only
90,000 are processed in one second, we deem the signal quality
to be 90,000/96,000 ~ 84%. When there is a drop in quality
we conclude that the workload applied to the graph at that
point is greater than the host can handle. From here, all GNU
Radio results will plot the trend of workload (x-axis) vs. signal
quality (y-axis) based on a set of parameters, such a thread
count and active cores.

Figure 6 shows how multiple threads affect performance
of the host. Maximum throughput is achieved regardless of
the parallelism preformed in the Processor Block whilst the
workload is low. However, when the workload reaches about
10,000 iterations of the simulation function (a sequence of
floating point divisions), performance is affected. There is a
gradual decline in performance for the single threaded Proces-
sor Block; however, the effects of the workload are not seen
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Fig. 4. Multiplexing OSSIE simulation graph.

until later for a multi-threaded block. This clearly shows that
the introduction of threads gives an immediate performance
improvement over a single threaded solution. This could be
attributed to a couple of properties, such as the workload
being distributed over different cores. Another possibility is
that there could be a blocking call within the Processor Block.
We discovered through additional studies that the cause was
the former, that is, the way the workload is distributed among
the various cores. We discuss this issue further later on when
we report about experiments in which we restricted the use of
cores.

Another point to mention from this experiment is to what
extent performance improved when more threads were in-
troduced. There is a notable improvement when using more
threads but the degree of these improvements vary with the
workload. For example, at the 40,000 division workload point,
doubling the number of threads almost doubles performance
(22% vs. 44% vs. 82% measure of quality depending on
whether 1, 2, or 4 cores are used). This is near the maxi-
mum theoretical speed-up that can be achieved by increasing
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the number of resources. However, looking at another data
point (e.g., 60,000 floating point divisions), the performance
difference is still substantial, but not quite as dramatic with
a performance of 16% vs. 32% vs. 52%. This could indicate
that while introducing threads can improve performance to near
optimal levels, there may be other limiting factors.

As for the test signal graph in Figure 5, we see a similar
pattern with a different scale (since there is more work in
processing an FM signal than generating a sine wave). When
the number of utilised threads doubles, the performance also
doubles. Even though this is not even using the SDR but a
self contained software experiment, it is useful to see how the
parallelisation is not strictly dependent on the source.

6.2 Threading on a Single Core

We have already shown that introducing threads into the SDR
host application may dramatically improve performance. How-
ever, it could be the case that software threads are responsible
for the improvement and not the introduction of multiple
hardware cores (which may be the case if blocking calls are
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Fig. 6. Results showing throughput while playing back FM
on multiple cores.

made). Our next set of experiments used the FM receiver on
a single core. This was accomplished by setting the process
affinity (locking a process to a subset of hardware cores) of
GNU Radio Companion to run on only one of the available
hardware cores.

Figure 7 shows the performance when only one core is
active using the floating point division simulation function.
This helps prove our earlier claim that the original performance
gains were due to threads being allocated to different cores.
Evidently, when there is only a single core running the SDR
application, there are no performance increases when multiple
software threads are introduced. This shows that in this system
multicore is responsible for the vast performance increases and
that software threads simply unlock this potential.

There are two more points of interest here. First, Figure 7
also shows that even if threads are introduced, performance
will not be degraded. This is quite an important point since
code that can be written using threads can have instant benefits
when run on a multicore system. In such cases, there is the
potential for only an insignificant penalty when run on a system
with fewer cores.

While software threads can unlock the potential gains that
can be accomplished by multicore hardware, the indiscrimi-
nate addition of software threads may also hurt performance.
Threads do incur an overhead, such as context switching. If a
significant number of additional threads were to be created and
used, these overheads may accumulate into poor performance.

We also compared the data in Figure 7 to the multicore
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execution when using a single threaded Processor Block (Fig-
ure 6). Even though in both cases only one software thread
is used in the Processor Block, there is higher performance
when using multicore. This could be down to multi-threading
elsewhere in GNU Radio. GNU Radio, by default, will run
each of its nodes in a different thread. So even if the Processor
Block is running in a single thread, the USRP Source block
will run in a different thread, as well as each other node in the
graph. This is an important finding as we inherit some implicit
multi-threaded properties from the framework that can be used
by the multicore CPU.
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Fig. 7. Performance playing back FM on one core.

6.3 The Single Threaded Framework

It was already seen that performance gains can be instantly
made in GNU Radio by utilising more cores due to the GNU
Radio framework. One interesting option GNU Radio gives
to the user is to select different component schedulers in
the framework. In particular, a user can choose whether the
framework should run using a multi-threaded scheduler (MTS)
or single-threaded scheduler (STS), where the multi-threaded
mode will execute each component in a different thread, while
the single-threaded scheduler runs all node operations in a
single thread. It is mentioned that a reason for using the single-
threaded mode instead is when there is a need to use hardware,
such as graphics cards via Cuda [14], to do some processing
in a component.

When each components runs in a single thread, this does not
affect the execution of other threads created within that compo-
nent. Thus, for some insight into this framework property, we
ran experiments with a single-threaded Processor Block using
either a multi-threaded or single-threaded scheduler. Figure 9
shows the difference between using the two framework modes.
This figure shows the performance under both framework
modes as well as 1 vs. 4 active cores.

The results shown in the figure are quite interesting. The
only case in which there is a significant drop in performance
is when the single threaded scheduler is used on multiple cores.
Performance actually improves when the scheduler is locked to
a particular core. Looking at the Linux system monitor during
execution, for the single-threaded scheduler on multiple cores
there is quite a bit of variation over what cores the application
is run on. This is in contrast to the case when there is only one
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Fig. 8. GNU Radio Companion graph with multiple Processor Blocks.

core for it to use; there is a single flat line of usage on one core.
Therefore, even though an application can get instant benefits
moving to multi-core, if it is in nature a serial application,
like GNU Radio when using the single-threaded scheduler,
multicore may actually hurt performance. (See Figure 7).
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Fig. 9. Comparison of scheduler types

6.4 Inter-Component Parallelism

Another variation of the system configuration is to use the
inherent multi-threaded framework given in GNU Radio to
exploit multicore architectures. This works similarly to earlier
experiments using OSSIE. Since GNU Radio runs each com-
ponent in its own thread (in multi-threaded mode) it should be
possible to share some workload between components, more
specifically, components of the same type. Therefore, instead
of running a single Processor Block with four threads, we
should achieve similar performance by chaining together four
Processor Blocks each using a single thread. Such a GNU
Radio graph can be seen in Figure 8. Intuitively, this model has
many benefits. The major benefit here is it mitigates concurrent
development from the component developer to the framework.
Since developing multi-threaded code is time consuming, this
requires additional expertise on part of the developer, and can
introduce concurrency issues. Thus, any mitigation is desirable.
This extra encapsulation also reinforces good software engi-
neering principles. Another benefit is reuse, as this component
can then be used as many times as necessary via a graph
modification instead of editing the code, introducing more
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threads within a component. One potential downside to this
assignment of threads to components is the overhead that may
be imposed by the framework, as there will be a cost in
performing these extra transitions within the graph.

The results of splitting workload between blocks can be seen
in Figure 10. There is the expected improvement when spread-
ing workload over more blocks, similar to intra-component par-
allelism (i.e., parallelism obtained by creating threads within
the Processor Block). However, it can also be seen that there
is a notable decrease in performance when moving from the
intra-component to inter-component parallelism. As we already
mentioned, some performance degradation is expected, how-
ever, there are cases when there is a 20% difference in perfor-
mance. Even though inter-component parallelism has yielded
some improvements, there are cases where performance is
significantly worse than their intra-component counterparts.
We further investigate this issue below.
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Fig. 10. Performance of intra vs. inter-component paral-
lelism.

6.5 Isolating Inter Component Bottleneck

In the previous subsection, we reported a test case where
inter-component performance differs from intra-component
performance. We decided to investigate this discrepancy us-
ing performance profilers. Some popular profilers, such as
gprof [15], can be fairly intrusive. They can require rebuilding
the entire executable which will effectively change the code,
hence changing program flow and performance. This may
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not be desirable, especially when we are trying to identify
bottlenecks in a large project.

A less intrusive option is OProfile [16], which has also
already been used to successfully profile GNU Radio [17].
Instead of relying on instrumentation, OProfile polls the OS
kernel to identify what applications, and functions within those
applications, are being executed at any one time. The polling
rate is fine enough to get a reliable idea of where the program
is spending most of its time whilst having little effect on
the overall runtime. The results of profiling our two different
experiments, which can be seen in Table 2, were surprising.

Profiling has shown a couple of differences between the
two parallelism methods. The first increase is in libpangoft2,
which is a text rendering library [18]. This seems like an
unlikely culprit in this case and may also be a side-effect of the
additional text messages printed by GNU Radio Companion
during a period of stress on the graph. The other increase is
within the component itself. To be more specific, there was
a slight increase in the amount of time the application spent
within the simulation function of the Processor Block when
aiming for inter-component parallelism. This may suggest that
the floating point division is more efficient when executed in
different threads within the same component rather than in
separate components.

6.6 Differing Simulation Processing

Our findings on Processor Block performance introduced yet
another variable into the pipeline; the type of simulation that is
being executed in the Processor Block. So far we have found
that there is more time spent within the simulated processing
function when using inter-component threading. We were to
discover what processing, if any, promotes this behaviour.
Therefore, we created several different test cases that exer-
cise different software properties to see what operations can
affect performance. We experimented with various kinds of
blocks differing in the kind of simulation operation that they
perform. The kind of operations that we considered included
the following:

In place integer addition and subtraction

Memory copy with floating point division

Recursive function calling

Large integer array reversal (using a temporary variable)
Large integer array reversal (using XOR swap)

In place integer addition and subtraction

An empty nested loop

Large dynamic memory allocation

In place floating point addition and subtraction

In place floating point division

In each of these cases we observed the difference between
performance with respect to inter vs. intra-component paral-
lelism. Interestingly, it was found that it is possible to achieve
similar performance with either methodology if the Processor
Block exhibited certain computational properties.

We consider our previous simulation block, in place floating
point division, as our baseline (Figure 10). In this case it
is clear there is a performance difference of up to 20% at
times. However, when we perform an in place integer addition
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and subtraction in our experiments (Figure 12), the differences
are eradicated with both inter-component and intra-component
parallelism yielding similar results. This suggests that there
are some inherent properties with the original Processor Block
(performing floating-point divisions) that do not work as well
when encapsulated in other components. This could be due to
contention for shared hardware resources, such as arithmetic
units.

We also observed that some operations showed a general
degradation between components. Reversing an array of 1
Million integers (Figure 11) also showed a slight degradation
of around 5%; however, the method of performing the swap
(using a temporary variable or exclusive or) did not make a
substantial difference.

There were further issues when experimenting with array
reversal methods in intra-component mode. As can be seen
in Figure 11, the previous optimal gains were achieved when
the number of threads was doubled from 1 to 2. However, the
biggest discrepancy seen here from previous intra-component
experiments is with the marginal improvement from 3 to 4
threads. The improvement is less than 5%, which is far less
than the gains seen in the addition/subtraction experiments.
This could hint towards memory or cache related bottlenecks.
In such a case, multicore does not offer the gains that we’d
hope for due to contention for other hardware resources.

The most significant difference was with respect to dynamic
memory allocation. Figure 13 shows a simulation function
which allocates a 100MB block of RAM on a system (which
has 6GB of RAM). Any kind of concurrent allocation has a
significant performance slow-down of over 80%. This indicates
that memory allocation in a concurrent environment may cause
an exorbitant performance penalty. We have not looked further
into what parameters affect performance; however, using a test
framework like the one we developed may be of use to a
systems developer. They could add various memory allocation
parameters to the framework, such as allocation length, and
see how this value affects their system. After all, there may
be other limiting factors, such as the memory bus on the
motherboard and the speed of RAM.
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Fig. 11. Performance of integer array reversal between
threads.
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Profile for intra-component parallelism Profile for inter-component parallelism
% of Time in | Symbol Name % of Time in | Symbol Name
Symbol Symbol
88.9296 ProcessorBlock::InPlaceFpDivision(int) 89.6622 ProcessorBlock::InPlaceFpDivision(int)
43517 fcomplex_dotprod_sse 3.7241 fcomplex_dotprod_sse
1.4393 libpangoft2-1.0.50.0.3000.1 1.2072 no-vmlinux
1.0082 no-vmlinux 1.1898 libpangoft2-1.0.50.0.3000.1
0.8701 python2.7 0.8408 python2.7
0.7006 no-vmlinux 0.6902 no-vmlinux

TABLE 2

Output of O-Profile, showing system wide CPU utilisation.
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Fig. 12. Performance of inter/intra component parallelism
with an addition/subtraction simulation function.
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Fig. 138. Performance of concurrent dynamic memory
allocation.

7 CONCLUSIONS AND FUTURE WORK

Our empirical study leads to several conclusions. First, we
have demonstrated a test framework that shows the conditions
upon which multicore CPUs and software threading can be
effective in an SDR environment. We feel that such a simple
interface can be of use to any concurrency project and the
ideas here can be domain independent and platform agnostic.
The automated approaches here have been invaluable in our
experimentation, but use of this approach could reach farther
afield, for example, performance testing could be used during
the normal automated software build and test cycles. It would
be easy to use frameworks similar to ours in test cases; issues
could be reported if metrics exceed threshold values. Even for
the developer, our framework can be a useful tool in order to
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tune their use of concurrency. A simple example here is to
avoid large concurrent memory allocations.

Secondly, it is clear from our results that going multicore
can have instant improvements. In the case of GNU Radio, its
use of multiple threads makes it an ideal candidate as switching
from one core to four increased performance significantly. In
general, parallelising over multiple cores gave good increases
in performance. However, if the application is a serial one,
going to multicore may actually hurt performance. Another
setback for multicore is when there is the need to interact
with other resources, such as RAM, which can significantly
degrade performance.

Finally, even though splitting work between cores can work
for a particular case, a system’s architecture may come into
play. We showed some evidence that splitting work between
components, which should be promoted as good software
design, may have an adverse effect on system performance.

Here, we have shown some results into our investigation
on the effects that multicore CPUs have within the domain
of software defined radios. Some of the results were conclu-
sive that a vast, near maximal increase in performance can
be achieved, but only in certain circumstances. A possible
future line of research is to find out what operations can be
parallelised, what cannot be parallelised, or maybe to find out
what different operations can be performed in parallel in order
to get maximum performance out of the system.
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