
Assessing Performance of Software
Defined Radios on Multicore Hardware

Nick Green, Ugo Buy
Dept. of Computer Science

University of Illinois
Chicago, Illinois

Copyright © University of Illinois at Chicago, 2013.

12th June 2013

Redge Bartholomew
Rockwell Collins

Cedar Rapids, Iowa

What is Multicore?
• Traditional, single core, processors use a serial pipeline

• The past: vast performance increases via increased transistor
count

• The present: Single-core performance has plateaued

• Instead, add multiple ‘cores’ on
a chip to increase performance

• Not a free lunch–your software
must be multicore aware to
exploit hardware capabilities

Project Aims
• Multicore is clearly the way forward, but there are some

questions when it comes to radios…

 Can an SDR benefit from execution on multicore h/w?

 Can SDR functionality be extended to make use of
multicore features?

 Can multicore adversely affects performance?

 Is it worth using multicore hardware for SDR
applications?

• Our goal: Study empirically SDR performance on stock
multicore hardware (e.g., 4-core PC running Linux)

Experiment Setup

• Ettus USRP1 WBX as the SDR transceiver

• The PC host setup (connected via USB) consists of
various version of Ubuntu and multicore Intel CPUs

• Two host frameworks were evaluated:

• OSSIE – JTRS compliant framework from Virginia Tech

• GNU Radio – A mature radio framework with USRP
support

SDR Software Architecture

• Both OSSIE and GNU Radio are built on a
graph based framework

• An application consists of source, destination
and transform nodes

• Example – Source node receives a signal
from the USRP, transformed (e.g. by
demodulation), and then played on the PC
speaker

• Important observation – Each node can run in
their own software thread

WBFM
Receiver

Amplifier

Audio
Sink

USRP
Receiver

OSSIE Experiments

• Used OSSIE to simulate SDR execution, with each node
having its own thread

• Created set of simple graphs with custom ‘processor
blocks’, that perform simulated processor intensive
workload (i.e., Floating-Point Divisions)

• Workload was varied over a number of components and
graph throughput was recorded

Example of component configuration

TX Demo Ser. Proc
Block

TX Demo Ser. Proc
Block

Mux Proc
Block

Ser. Proc
Block

RX
Demo

TX Demo: Generate packets at 1 ms
frequency (from OSSIE)

Serial Proc Block: repeat FP divisions
Mux Proc Block: same as above +

multiplexing
RX Demo: Receive packets at 1 ms

frequency (from OSSIE)

Empirical Data (many software threads)
• Sample data for graph with multiplexing element (other

graphs show similar behavior)

N1
(iter.)

N2
(iter.)

Mux
(iter.)

N4
(iter.)

Dual+
(ms)

Mono
(ms)

Mono+
(ms)

Dual+ /
Mono

Dual+ /
Mono+

Mono+ /
Mono

1 1 1 1 1.20 1.20 1.20 1.00 1.00 1.00

1 1 1 1000 109 110 110 0.99 0.99 1.00

1 1 1 5000 548 548 549 1.00 1.00 1.00

1 1 5000 5000 547 1095 1088 0.50 0.50 0.99

1000 1000 5000 1000 655 876 873 0.75 0.75 1.00

1000 1000 1 1 110 220 218 0.50 0.50 0.99

1000 1000 1 5000 548 781 765 0.71 0.72 1.00

5000 5000 5000 5000 1084 2153 2176 0.50 0.50 1.00

+ Signifies hyper-threading being enabled

GNU Radio Experiments
• Created graphs in GNU Radio to receive transmissions via a

USRP

• Graphs use a processor
block and performing
some processing
(performing floating point
division)

• Created a test dashboard
to vary parameters

Empirical Data
• Measuring signal quality during FM reception where quality is

measured by percentage of received packets

Inter vs Intra Component Parallelism

• First simulation: Performance can
be enhanced with explicit
concurrency within a component

• But with OSSIE, parallelism at
component level also gives gains

• We can split work done by
Processing Block into multiple
blocks (architectural advantage)

Empirical Data (Threading Mode)
• Measuring signal quality (percentage of received packets)

Thread: Threads in one component
Component: Components each with one thread

GNU Radio Observations

• Unexpected degradation in case of inter-component
parallelism vs. intra-component

• Intuition would say there is an overhead with inter-
component transitions. However, after profiling, the culprit
was OUR processing block!

• High floating point division workload did poorly when
processing was split among components

Processor Block

• Processor Block operations show some interesting
performance properties. More experiments were run

• Performance varied between processing type, typically
multicore offering vast gains over single

Simulation Operation Observation
In place floating point
division

Good performance with intra-component parallelism,
degraded with inter-component

Integer add/subtract Optimal performance gains achieved
Integer array reversal Substantial gains limited to 3 thread on quad core
Dynamic memory alloc. Severely degraded when multiple threads used for

allocation

Summary

• Multicore is a good thing!

• In the presented cases, multicore can offer instant benefits
just by using the inherent multithreaded frameworks

• But performance varies based on what is being done and
can be fragile

• Our test dashboard was very helpful in finding what
worked, what didn’t, and limitations

Thank you very much!

Questions:
– Nick Green, ngreen21@uic.edu
– Ugo Buy, buy@cs.uic.edu
– Redge Bartholomew rgbartho@rockwellcollins.com

